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We consider freely decaying two-dimensional isotropic turbulence. It is usually
assumed that, in such turbulence, the energy spectrum at small wavenumber, k, takes
the form E(k → 0) ∼ Ik3, where I is the two-dimensional version of Loitsyansky’s
integral. However, a second possibility is E(k → 0) ∼ Lk, where the pre-factor, L,
is the two-dimensional analogue of Saffman’s integral. We show that, as in three
dimensions, L is an invariant and that E ∼ Lk spectra arise whenever the eddies
possess a significant amount of linear impulse. The conservation of L is shown
to be a direct consequence of the principle of conservation of linear momentum.
We also show that isotropic turbulence dominated by a cloud of randomly located
monopole vortices has a singular energy spectrum of the form E(k → 0) ∼ Jk−1,
where J , like L, is an invariant. However, while E ∼ Jk−1 necessarily implies the
existence of a sea of monopoles, the converse need not be true: a sea of monopoles
whose spatial locations are not entirely random, but constrained in some way, need
not give a E ∼ Jk−1 spectra. The constraint imposed by the conservation of energy
is particularly important, ruling out E ∼ Jk−1 spectra for certain classes of initial
conditions. Finally, we provide simple explicit examples of random vorticity fields
with E ∼ Ik3, E ∼ Lk and E ∼ Jk−1 spectra.

1. Introduction
1.1. The large-scale structure of three-dimensional turbulence

In order to place this work in context, we start by considering three-dimensional,
rather than two-dimensional, turbulence. In three-dimensional isotropic turbulence,
the form of the energy spectrum at small wavenumber, k, takes the form,

E(k) = Lk2/4π2 + Ik4/24π2 + · · ·, (1.1)

provided that the two-point velocity correlation, 〈u · u′〉, decays sufficiently rapidly
with separation r = |r| = |x ′ − x|. (Here u is measured at x and u′ at x ′.) The pre-
factors, L and I , are known as the Saffman and Loitsyansky integrals, respectively,
and can be written as,

L =

∫
〈u · u′〉 dr, (1.2)

and

I = −
∫

r2〈u · u′〉 dr. (1.3)
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(See, for example, Davidson 2004, § 6.3.) Now 〈u · u′〉 is related to the longitudinal
correlation function, f (r), by

〈u · u′〉 =
u2

r2

∂

∂r
(r3f ), u2 = 1

3
〈u2〉, (1.4)

and so Saffman’s integral can be rewritten as

L = 4πu2[r3f ]∞. (1.5)

(The subscript ∞ indicates r → ∞.) Evidently, whether or not we obtain a Saffman,
E ∼ Lk2, spectrum depends on the asymptotic form of f at large r . Alternatively,
noting that ensemble and volume averages are equivalent, we may rewrite L in the
form,

L =

〈[∫
V

u dV

]2〉/
V, (1.6)

where V is some large volume. Thus we obtain a Saffman spectrum when the
turbulence contains a sufficiently large amount of linear momentum (Saffman 1967),
and this occurs when the eddies (blobs of vorticity, ω) typically have a finite amount
of linear impulse, 1

2

∫
x × ω dV (see, for example, Davidson 2004, § 6.3). Saffman also

showed that L is an invariant of freely decaying three-dimensional turbulence.
When L is zero, which occurs if the turbulence has insufficient linear impulse, we

obtain a Batchelor spectrum, E ∼ Ik4. Landau showed that, provided the two-point
velocity correlations decay sufficiently rapidly with distance (and they probably do
not in practice), then I can be related to the angular momentum of the turbulence as
follows:

I = Lim
V →∞

〈H2〉
V

, H =

∫
V

(x × u) dV. (1.7)

Thus there are some similarities between I and L. However, unlike L, I is not, in
general, an invariant. That is, the Kármán–Howarth equation integrates to give

dI

dt
= 8π[u3r4K]∞, (1.8)

where K is the usual triple longitudinal correlation function, u3K = 〈u2
x(x)ux(x + r êx)〉,

and the work of Batchelor & Proudman (1956) suggests that the long-range pressure
forces will, in general, establish long-range correlations of the from K∞ ∼ r−4.
Certainly, numerical simulations of E ∼ Ik4 turbulence usually show a slow rise in I .
Curiously, though, recent simulations performed in very large computational
domains show I ≈ constant once the turbulence has become fully developed (Ishida,
Davidson & Kaneda 2006).

Both E ∼ Lk2 and E ∼ Ik4 types of turbulence are readily generated in computer
simulations. Which form is seen depends on the initial conditions. If L is non-zero
at t =0, then we obtain a Saffman spectrum, whereas L =0 at t = 0 excludes such a
spectrum. Opinion is divided, however, as to whether grid turbulence, for example, is
of the Saffman or Batchelor type, with Saffman (1967) suggesting it is of the form
E ∼ Ik4.

Note that E ∼ cnk
n, 2 <n< 4, is also a theoretical possibility for homogeneous

turbulence, with cn = constant for n< 4. However, since the spectral tensor is singular
for n 	= 4, it is usually thought that Saffman and Batchelor spectra are the most
natural cases.
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We close this section with a comment about the relationship between homogeneous
isotropic turbulence and numerical simulations in a periodic cube. The question of
interest is whether or not periodicity excludes certain statistical states, such as Saffman
turbulence. We raise this issue here because it is relevant to our subsequent discussion
of two-dimension turbulence, yet the numerical evidence is more extensive in three
dimensions.

Now it is clear that, if the domain size, LBOX, in a periodic simulation is not
much larger than the integral scale, �, of the turbulence, then the large scales can
behave quite differently to those of conventional homogeneous turbulence. After all,
periodicity enforces an unphysical boundary condition, as well as anisotropy, on the
large scales (see, for example, Davidson 2004, § 7.2). Nevertheless, it seems reasonable
to suppose that flow in a periodic cube approaches that of conventional homogeneous
turbulence as LBOX/� → ∞. It follows that, since a Saffman spectrum is a legitimate
state for homogeneous turbulence, then it should also be realizable in a large periodic
cube, and indeed there are many examples of this in the literature (see, for example,
Lesieur, Ossai & Metais 1999).

At first sight this appears paradoxical, since
∫

u dV =0 in a periodic cube, provided
the integral is taken over the whole domain, and this seems to be at odds with (1.6).
There is no such contradiction, however, as can be seen from the following argument.
Consider first strictly homogenous isotropic turbulence. Here we enforce 〈u〉 =0
through a suitable choice of frame of reference, and this requires

Lim
V →∞

∫
u dV

V
= 0. (1.9)

However, this is not enough to enforce the stronger condition

L = Lim
V →∞

(∫
u dV

)2

V
= 0, (1.10)

and indeed the central limit theorem suggests that
∫

u dV ∼ V 1/2, so that we might
expect that L is, in general, non-zero. (That is, we may consider the turbulence to
be composed of a sea of eddies, each of which has some linear impulse. Now the
linear momentum within some large spherical volume V is proportional to the sum
of the linear impulses of the individual eddies contained within V , and if the eddies
are assigned a random linear impulse taken from a p.d.f. of zero mean, then (1.9) is
satisfied, but (1.10) is not.) Thus, a Saffman spectrum is quite natural, provided that
the eddies possess a significant amount of linear impulse.

Turning now to a period cube in which LBOX/� 
 1, the fact that
∫

u dV = 0 for
the domain as a whole is equivalent to condition (1.9) in homogeneous turbulence.
However, if we consider a large volume of radius R, such that � � R � LBOX, then
in general

∫
u dV will be non-zero for that volume, and indeed we would expect∫

u dV ∼ V 1/2 ∼ R3/2, provided the eddies have a significant linear impulse. Thus,
periodicity does not exclude a Saffman spectrum.

We shall see that similar issues arise in our discussion of two-dimensional turbulence
in a periodic square, where the fact that

∫
u dV = 0, or

∫
ω dV =0, ω being the

vorticity, does not exclude the possibility that
∫

〈u · u′〉 dr , or
∫

〈ωω′〉 dr , are finite.

1.2. From three dimensions to two dimensions

Let us now turn to two-dimensional isotropic turbulence. We shall see, in § 2, that the
analogue of (1.1) is

E(k) = Lk/4π + Ik3/16π + · · ·, (1.11)
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where, as before,

L =

∫
〈u · u′〉 dr, I = −

∫
r2〈u · u′〉 dr, (1.12)

and we require 〈u · u′〉 to decay sufficiently rapidly with |r | for the integrals to exist.
(Of course, the integration over r is now performed in two dimensions.) The curious
feature of (1.11) is that, in contrast to three-dimensional turbulence, it is almost
universally assumed that L is zero and that consequently E ∼ Ik3 for small k. (One
of the notable exceptions to this is Lesieur & Herring 1985, who note that E ∼ k is
indeed a possibility.) Certainly, nearly all numerical simulations show E ∼ k3, provided
the computational domain is large enough (see, for example, Chasnov 1997; Ossai &
Lesieur 2001; Lowe & Davidson 2005). It is natural to ask why this should be, and
this provides one of the motivations for this paper. The same simulations also show
the emergence of coherent vortices at late times, and it is natural to ask if there is a
relationship between such vortices and the shape of E(k).

The structure of the paper is as follows. In § 2 we lay the groundwork, introducing
all the statistical quantities required for our discussion, as well as their relationship to
each other. We also introduce the two-dimensional Kármán–Howarth equation and
discuss some of its immediate consequences for I and L, such as the fact that L is
an invariant. Although some of this material may be found scattered across various
publications, we set it out systematically, if concisely, since it is not well documented
elsewhere.

In § 3 we ask: are there any kinematic reasons why E ∼ k3 spectra are more natural
than E ∼ Lk spectra? We shall see that there are not, and indeed we provide simple
explicit examples of both E ∼ Lk and E ∼ Ik3 spectra. We shall see that, as in three
dimension, the key point is whether or not the turbulent eddies possess finite linear
impulse: if they do, then E ∼ Lk, and if they do not, then E ∼ Ik3. We also show
that homogeneous turbulence composed of a random sea of monopole vortices has a
singular spectrum of the form E ∼ Jk−1, where the pre-factor J is also an invariant.
Note that the examples given in this section are purely kinematic.

We turn to dynamics in § § 4–6. We start, in § 4, by considering E ∼ Lk turbulence.
Here we show that the invariance of L is a direct consequence of the principle
of conservation of linear momentum. Now the fact that L is an invariant means
that a spectrum which starts out as E ∼ Lk, must remain of this form. Lesieur &
Herring (1985) note that such spectra cannot be self-similar at the large scales and
they suggest that the E ∼ Lk part of the spectrum is progressively overshadowed
by an increasingly strong E ∼ Ik3 region. We confirm this picture and give a simple
argument which suggests that the wavenumber characteristic of the intersection of the
E ∼ Lk and E ∼ Ik3 regions, k∗, decreases as k∗ ∼ t−n, where 1 <n< 1.3. Given that
numerical simulations are usually performed in domains of modest size (relative to the
integral scale), this suggests that the E ∼ Lk part of the spectrum will be rapidly lost.

We turn to E ∼ Jk−1 spectra in § 5, showing that the physical interpretation of the
conservation of J is similar to that of Corrsin’s invariant in passive scalar mixing.
In § 6, we consider the dynamics of E ∼ Ik3 turbulence, in which both J and L are
set to zero by virtue of the initial conditions. Here we discuss the time-dependence
of Loitsyansky’s integral, I , and its relationship to the angular momentum of the
turbulence.

We conclude, in § 7, with a brief discussion of the relationship between our findings
and the vortical structures observed in numerical simulations.
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2. Preliminaries
2.1. The kinematics of two-dimensional turbulence

The most general form of the two-point one-time velocity correlation, Qij = 〈uiu
′
j 〉,

in incompressible isotropic two-dimensional turbulence is,

Qij (r) = u2

{
∂

∂r
(rf )δij − rirj

r
f ′(r)

}
, (2.1)

where u2 = 〈u2
x〉 = 〈u2

y〉, r = |r | = |x ′ − x|, and f (r) is the usual longitudinal correla-
tion function. The triple velocity correlation tensor, Sij�(r) = 〈ui(x)uj (x)u�(x + r)〉 =
〈uiuju

′
l〉, on the other hand, takes the form,

Sij� = u3

{
riδj� + rj δi�

2r

∂

∂r
(rK) − rirj r�

r

∂

∂r

(
K

r

)
− r�δijK

r

}
, (2.2)

where, as usual, u3K = 〈u2
x(x)ux(x + r êx)〉 (see, for example, Davidson 2004, § 10.3).

Two important special cases of (2.1) and (2.2) are

〈u · u′〉 =
u2

r

∂

∂r
(r2f ) (2.3)

and

Siji =
u3rj

2r3

∂

∂r
(r3K), (2.4)

results to which we shall return shortly. The corresponding form of the spectral tensor,

Φij (k) =
1

4π2

∫
Qij exp(−j k · r) dr, (2.5)

is

Φij (k) =
E(k)

πk
[δij − kikj/k2], (2.6)

which is non-analytic at k = 0 for an E(k → 0) ∼ Lk spectrum. Moreover, integrating
over the polar angle in (2.5) shows that E(k) and 〈u · u′〉 are related via the Hankel
transform pair,

E(k) = 1
2

∫ ∞

0

〈u · u′〉krJ0(kr) dr, (2.7a)

〈u · u′〉 = 2

∫ ∞

0

E(k)J0(kr) dk, (2.7b)

provided, of course, that 〈u · u′〉 decreases sufficiently rapidly with |r | for the integrals
to exist. Expanding J0(kr) in a power series in kr then yields

E(k) = Lk/4π + Ik3/16π + · · ·, (2.8)

where,

L =

∫
〈u · u′〉 dr = 2πu2[r2f ]∞ (2.9)

and

I = −
∫

r2〈u · u′〉 dr (2.10)

are the two-dimensional versions of the Saffman and Loitsyansky integrals, respec-
tively. (Note that we have used (2.3) to relate L to f in (2.9).)



436 P. A. Davidson

We shall see, in § 3.3, that 〈u · u′〉 does not always decay sufficiently rapidly with
|r| for (2.7) to be meaningful. In particular, E ∼ k−1 spectra give rise to a logarithmic
divergence of 〈u · u′〉. However, in such cases it turns out that the vorticity correlation,
〈ωω′〉, is well behaved and so we may replace (2.7) by

Eω(k) = 1
2

∫ ∞

0

〈ωω′〉krJ0(kr) dr, (2.11)

〈ωω′〉 = 2

∫ ∞

0

Eω(k)J0(kr) dk, (2.12)

where

Eω(k) = k2E(k) (2.13)

is the enstrophy spectrum. Again, expanding J0(kr) in a power series in kr yields,

E(k) =
J

4π
k−1 +

L̂

4π
k +

Î

16π
k3 + · · · , (2.14)

where,

J =

∫
〈ωω′〉 dr, (2.15)

and

L̂ = − 1
4

∫
r2〈ωω′〉 dr, (2.16)

Î = 1
16

∫
r4〈ωω′〉 dr. (2.17)

The pre-factor J can be expressed in terms of 〈u · u′〉 using

〈ωω′〉 = −∇2〈u · u′〉, (2.18)

from which,

J = −2π

[
r

∂

∂r
〈u · u′〉

]
∞
. (2.19)

Evidently, the leading-order term in (2.14) vanishes when 〈u · u′〉 decays sufficiently

rapidly with |r |. Similarly, we may rewrite L̂ and Î in terms of 〈u · u′〉 using (2.18),
and it is readily confirmed that, when 〈u · u′〉∞ decays sufficiently rapidly with |r |,
L̂= L and Î = I . In particular,

L̂ = L for [r2〈u · u′〉]∞ = 0, Î = I for [r4〈u · u′〉]∞ = 0. (2.20)

Thus we recover (1.11) and (2.8) in cases where [r4〈u · u′〉]∞ =0.

2.2. The Kármán–Howarth equation in two dimensions

We now move from kinematics to dynamics. As in three dimensions, the Navier–
Stokes equation provides the evolution equation

∂Qij

∂t
=

∂

∂r�

[Sj�i + Si�j ] + 2ν∇2Qij . (2.21)

Setting i = j , and using (2.4) to evaluate Siji , this yields the two-dimensional Kármán–
Howarth equation:

∂

∂t
〈u · u′〉 =

u3

r

∂

∂r

1

r

∂

∂r
(r3K) + 2ν∇2〈u · u′〉. (2.22)
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Evolution equations for I and L follow directly from (2.22). They are,

dL

dt
= 2πu3

[
1

r

∂

∂r
(r3K)

]
∞

, (2.23)

dI

dt
= 2πu3

[
2r3K − r

∂

∂r
(r3K)

]
∞

− 8νL, (2.24)

where we have integrated by parts to obtain (2.24). Note that we have dropped certain
viscous terms in (2.23) and (2.24) on the assumption that 〈u · u′〉∞ decays as r−3, or
faster. (We shall confirm shortly that this is valid for E ∼ k and E ∼ k3 spectra, but
not, of course, E ∼ k−1 spectra.)

There now arises the question of the asymptotic form of K∞. This, in turn, is
controlled by the long-range pressure forces, as described by Batchelor & Proudman
(1956) for three-dimensional turbulence. A reworking of their analysis in two
dimensions yields K∞ ∼ r−3 (Davidson 2004, § 10.3). That is, a localized vortex patch
sets up far-field pressure fluctuations which fall off as p∞ ∼ r−2 and this, in turn,
produces velocity–pressure correlations of the form 〈uiujp

′〉∞ ∼ r−2. The gradients
of just such correlations appear as source terms in the evolution equation for Sijk ,
leading to K∞ ∼ r−3. It follows that (2.23) and (2.24) reduce to

L = constant, (2.25)

dI

dt
= 4πu3[r3K]∞ − 8νL. (2.26)

These results can also be reached via a standard spectral analysis (see, for example,
Lesieur & Herring 1985, or Davidson 2004, § 10.3). The easiest way is to take the
Hankel transform of (2.22) in accordance with (2.7). Noting that K∞ ∼ r−3, or faster,
we obtain,

∂E

∂t
= k3

∫ ∞

0

∂

∂r
[r3u3K]

J1(kr)

2kr
dr − 2νk2E.

When combined with expansion (2.8), we recover (2.25) and (2.26).
In cases where 〈u · u′〉∞ is not well behaved, but 〈ωω′〉∞ is, such as E ∼ k−1 spectra,

we can find analogous equations for J , L̂ and Î . The procedure is straightforward.
The Laplacian of (2.22) yields

∂

∂t
〈ωω′〉 = −∇2

[
1

r

∂

∂r

1

r

∂

∂r
(r3u3K)

]
+ 2ν∇2〈ωω′〉, (2.27)

the integral moments of which provide evolution equations for J , L̂ and Î . These
equations involve integrals of derivatives of K and 〈ωω′〉 on the right-hand side.
Integrating these by parts, and noting that K∞ ∼ r−3, we find, after a little algebra

J = constant, (2.28)

dL̂

dt
= −2νJ, (2.29)

dÎ

dt
= 4πu3[r3K]∞ − 8νL̂. (2.30)

(In order to simplify the viscous terms in (2.28)–(2.30) we have assumed that 〈ωω′〉∞
decays faster than r−4, which will be justified shortly.) Thus, in the limit of large Re,
J and L̂ are invariants. Of course, (2.28)–(2.30) are equivalent to (2.25) and (2.26) for
cases in which [r4〈u · u′〉]∞ = 0.
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One other consequence of K∞ ∼ r−3 +O(r−4) is that (2.22) demands that ∂〈u · u′〉∞/

∂t ∼ r−5. Hence 〈u · u′〉∞ ∼ r−5, unless 〈u · u′〉∞ happens to fall off more slowly at t =0.
We shall see that 〈u · u′〉∞ ∼ r−5 is typical of E ∼ k and E ∼ k3 spectra, justifying the
neglect of certain viscous terms in (2.23) and (2.24). However, for E ∼ k−1 spectra,
(2.19) tells us that 〈u · u′〉∞ diverges logarithmically at t = 0, and since J is an
invariant, this situation persists. In such cases we must turn to (2.27), which tells us
that ∂〈ωω′〉∞/∂t ∼ r−7, and hence 〈ωω′〉∞ ∼ r−7, unless 〈ωω′〉∞ falls off more slowly at
t = 0. We shall see that 〈ωω′〉∞ ∼ r−7 is typical of E ∼ k−1 spectra.

Returning to E ∼ k and E ∼ k3 spectra, the estimate 〈u · u′〉∞ ∼ r−5, combined with
〈u · u′〉 = −∇2〈ψψ ′〉, tells us that 〈ψψ ′〉∞ ∼ r−3, where ψ is the streamfunction. It
follows that I can be rewritten in terms of 〈ψψ ′〉 in the form:

I = 4

∫
〈ψψ ′〉 dr. (2.31)

We shall make use of (2.31) later.
Note that, so far, there is nothing in our analysis which would rule out either

E ∼ Lk, or E ∼ Jk−1, spectra. Indeed, since

L =

〈[∫
V

u dV

]2〉/
V, (2.32)

where V is some large two-dimensional volume, we might expect that L is non-
zero whenever the turbulence has sufficient linear momentum. Moreover, the linear
momentum of a two-dimensional flow is proportional to the sum of the linear
impulses,

∫
x × ω dV , of the eddies (filaments or blobs of vorticity) within the flow.

So a loose application of the central limit theorem, along the lines of § 1.1, suggests
that L will be non-zero if, on average, the eddies have a finite linear impulse. We
shall now show that this is indeed the case.

3. Simple kinematic examples of E ∼ Ik3, E ∼ Lk and E ∼ Jk−1 spectra
3.1. An example of an E ∼ Ik3 spectrum

Consider a simple eddy, described in polar coordinates as

u = Ωr exp[−2r2/�2]êθ , (3.1)

where Ω and � are constants. This has zero linear impulse,
∫

x × ωdV = 0, but finite
angular impulse and angular momentum. Clearly, its streamfunction is

ψ = ψ0 exp[−2r2/�2], (3.2)

where ψ0 = Ω�2/4. Now suppose that such eddies are randomly but uniformly
distributed in space to form an artificial field of turbulence composed of eddies
of fixed size �. If the sign of ψ0 for each eddy is also randomly chosen, subject to the
constraint that 〈ψ0〉 = 0, then we may write

ψ =
∑

n

δn|ψ0| exp[−2(x − xn)
2/�2], (3.3)

where δn = ±1 and xn locates the nth eddy. Thus, δn and xn constitute a set of
independent random variables, with 〈δn〉 =0 and xn uniformly distributed in space.
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We now form the two-point correlation,

〈ψ(0)ψ(r)〉 =
∑

m

∑
n

〈δmδn〉ψ2
0

〈
exp

[
−2

(
x2

m + (r − xn)
2
)/

�2
]〉

, (3.4)

which we can rewrite as

〈ψψ ′〉 = ψ2
0

∑
n

〈
exp

[
−2

(
x2

n + (r − xn)
2
)/

�2
]〉

, (3.5)

since 〈δnδm〉 = δnm. This may be rearranged into the form

〈ψψ ′〉 = ψ2
0 exp(−r2/�2)

∑
n

〈
exp

[
−4 y2

n/�
2
]〉

, (3.6)

where yn = xn − r/2 is a new random variable, obtained from xn by a shift of origin.
It follows that, for this artificial field of turbulence,

〈ψψ ′〉 = 〈ψ2〉 exp(−r2/�2). (3.7)

Moreover, since

〈u · u′〉 = −∇2〈ψψ ′〉 =
u2

r

∂

∂r
(r2f ), (3.8)

we obtain,

f = exp(−r2/�2), 〈u · u′〉 = 2u2[1 − r2/�2] exp(−r2/�2), (3.9)

and hence, from (2.7),

E(k) = 1
2
〈u2〉�(k�/2)3 exp[−k2�2/4]. (3.10)

An expression similar to (3.9) is stated without proof in Townsend (1976), although
Townsend constructed his field of turbulence in a different way. In any event, the
key result in the present context is that we have L =0 and E ∼ k3. Of course, this is
precisely what we expect, since our model eddy has zero net linear impulse.

Now suppose that, instead of having eddies of just one size, we have a continuous
distribution of sizes. Let s represent eddy size, and Ê(s) be the energy density, defined
by the fact that Ê(s) ds gives the contribution to 〈u2〉/2 which comes from eddies in
the size range s → s + ds, i.e.

1
2
〈u2〉 =

∫ ∞

0

Ê(s) ds =

∫ ∞

0

E(k) dk.

If all of the eddies are of type (3.1), but of varying size, then the principle of
superposition allows us to generalize (3.10) to give,

E(k) =

∫ ∞

0

Ê(s)s(ks/2)3 exp[−k2s2/4] ds.

Of course, like (3.10), this is of the form E ∼ k3 since the flow has no linear impulse.
Let us now repeat the analysis, but with a model eddy that does have some linear
impulse.

3.2. An example of an E ∼ Lk spectrum

Consider a model eddy whose vorticity field takes the form

ω = Ω(x/�) exp[−2(x2 + y2)/�2], (3.11)
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where Ω and � are, once again, constants. Clearly, this is a dipole field with non-zero
linear impulse. If such eddies are randomly but uniformly distributed in space, and
with random orientation and sign, then the net vorticity can be written as

ω =
∑

n

δn|Ω |((x − xn) · ên/�) exp[−2(x − xn)
2/�2]. (3.12)

Here δn = ±1, xn locates the nth eddy, and ên is a unit vector which determines
the orientation of the nth eddy. Thus, δn, xn and ên constitute a set of independent
random variables, with 〈δn〉 = 0, 〈(ên)

2〉 = 1, and xn uniformly distributed in space.
We now form the two-point vorticity correlation

〈ω(0)ω(r)〉 =
∑

m

∑
n

〈δmδn〉(Ω/�)2
〈
(xm · êm)((xn − r) · ên) exp

[
−2

(
x2

m +(r − xn)
2
)
/�2

]〉
,

and since 〈δnδm〉 = δnm, this simplifies to

〈ωω′〉 = (Ω/�)2
∑

n

〈
(xn · ên)((xn − r) · ên) exp

[
−2

(
x2

n + (r − xn)
2
)
/�2

]〉
. (3.13)

As before, we replace xn by the new random variable yn = xn − r/2, which is obtained
from xn by a shift of origin. In terms of yn, (3.13) becomes

〈ωω′〉 = (Ω/�)2 exp (−r2/�2)
∑

n

〈[
( yn · ên)

2 − 1
4
(r · ên)

2
]
exp

[
−4 y2

n/�
2
]〉

(3.14)

and since ên and yn are statistically independent, this yields,

〈ωω′〉 = (Ω/�)2 exp (−r2/�2)
∑

n

[
1
2

〈
y2

n exp
[
−4 y2

n/�
2
]〉

− 1
8
r2

〈
exp

[
−4 y2

n/�
2
]〉]

. (3.15)

The final step is to rewrite (3.15) in terms of the dimensionless random variable
z2

n = 4 y2
n/�

2:

〈ωω′〉 = 1
8
Ω2 exp (−r2/�2)

∑
n

[〈
z2

n exp
(
−z2

n

)〉
− (r/�)2

〈
exp

(
−z2

n

)〉]
. (3.16)

Now xn, and hence yn, are uniformly distributed in space, and so it follows that
〈z2

n exp (−z2
n)〉 = 〈exp (−z2

n)〉, since∫ ∞

0

z2 exp (−z2) dz2 =

∫ ∞

0

exp (−z2) dz2 = 1.

We conclude, therefore, that the two-point vorticity correlation is simply,

〈ωω′〉 = 〈ω2〉[1 − r2/�2] exp (−r2/�2). (3.17)

Expressions for 〈u · u′〉 and f (r) follow immediately from 〈ωω′〉 = −∇2〈u · u′〉 and
(2.3). We find,

〈u · u′〉 = 〈u2〉 exp(−r2/�2) (3.18)

and

f (r) =
1 − exp(−r2/�2)

(r/�)2
. (3.19)

It is interesting to compare (3.18) and (3.19) with (3.9). In both cases, 〈u · u′〉 decays
exponentially, so that I is well defined and expansion (2.8) justified. However, the
crucial difference is that f∞ is exponentially small in (3.9), so that L = 0, whereas
f∞ ∼ r−2 in (3.19), which yields a non-zero value of L in accordance with (2.9). In
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fact, (2.7) gives us

E(k) = 1
2
〈u2〉�[k�/2] exp[−k2�2/4]. (3.20)

Thus, as anticipated in § 2.2, a random sea of dipoles yields a non-zero L and hence
an E ∼ Lk spectrum. The analysis is readily generalized to a sea of dipole eddies with
a continuous distribution of sizes, s, as in § 3.1.

3.3. An example of a singular, E ∼ Jk−1, spectrum

We close this section with an example where E(k) is divergent. Suppose that our
artificial field of turbulence is now composed of a random sea of monopole vortices
of arbitrary sign, of the form ω = ω0 exp[−2r2/�2]. Repeating the analysis of § 3.1,
but with ω replacing ψ , yields, by virtue of (3.7),

〈ωω′〉 = 〈ω2〉 exp(−r2/�2). (3.21)

Next, using (2.11), we obtain a vorticity power spectrum, Eω(k), of the form,

Eω(k) = k2E(k) = 1
2
〈ω2〉�[k�/2] exp[−k2�2/4]. (3.22)

The corresponding energy spectrum is therefore divergent for small k, E ∼ k−1,
reflecting the fact that the energy of a monopole vortex, or indeed a homogeneous
random sea of such vortices, is divergent. (Note, however, that the divergence
of 〈u2〉 ∼

∫
E dk caused by the existence of monopoles is avoided in numerical

simulations in a periodic square, since there is a lower cutoff in k.)
The form of 〈u · u′〉 corresponding to spectrum (3.22) can be found from (2.18).

One integration yields

r
∂

∂r
〈u · u′〉 = − 1

2
〈ω2〉�2[1 − exp(−r2/�2)], (3.23)

from which,

〈u · u′〉 − 〈u · u′〉r=a = 1
4
〈ω2〉�2[Ein(a2/�2) − Ein(r2/�2)], (3.24)

where Ein(x) is the usual exponential integral. Note that, for large x, Ein(x) ∼ ln(x),
and so 〈u · u′〉 diverges logarithmically, as noted in § 2.1.

Now suppose that, instead of having eddies of just one size, we have a continuous
distribution of sizes. Let s represent eddy size, and Êω(s) be the enstrophy density,
defined by

1
2
〈ω2〉 =

∫ ∞

0

Êω(s) ds =

∫ ∞

0

Eω(k) dk.

If all of the eddies are monopoles, of the form ω = ω0 exp[−2r2/s2], but of varying
size, then, as in § 3.1, we may repeat the analysis using superposition to give,

Eω(k) =

∫ ∞

0

Êω(s)s[ks/2] exp[−k2s2/4] ds.

Of course, like (3.22), this is of the form Eω ∼ k at small k, corresponding to the
singular energy spectrum E ∼ k−1.

We close this section with a note of warning. While we have shown that a sea
of randomly located monopoles gives rise to E ∼ k−1 spectrum, the same need not
be true of a sea of monopoles whose spatial locations are somehow constrained.
We shall return to this in § 7, where we shall see that the constraint imposed by
the conservation of energy rules out an E ∼ k−1 spectrum for monopoles which have
emerged from certain types of initial conditions.
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3.4. A summary of the kinematic results

Perhaps it is worth summarizing the results of § § 3.1–3.3. We have shown that an
artificial field of turbulence composed of eddies with zero linear impulse, but finite
angular impulse, has L = 0, and hence E ∼ Ik3, whereas a random distribution of
eddies with finite linear impulse has L 	= 0, and hence E ∼ Lk. A random cloud of
monopoles, on the other hand, has E ∼ Jk−1. In summary, then, we have:

turbulence composed of random monopoles: E(k → 0) =
J

4π
k−1, J =

∫
〈ωω′〉 dr;

turbulence composed of random dipoles: E(k → 0) =
L

4π
k, L =

∫
〈u · u′〉 dr;

turbulence with J = L = 0 : E(k → 0) =
I

16π
k3, I = −

∫
r2〈u · u′〉 dr.

We shall see, in § 6, that I is related to the angular momentum of the turbulence.
In principle, then, we could have kinematically admissible fields of turbulence in
which J = L = I = 0, and these would have E ∼ k5 spectra, or perhaps some higher
exponent. Such fields are readily generated by choosing a model eddy with zero linear
and angular impulse and then repeating the analysis of § 3.1. However, the transient
growth of I (t) in two-dimensional turbulence, discussed in § 6, means that turbulence
which starts out as E ∼ k5 will rapidly develop an E ∼ Ik3 component at small k.

4. The large-scale dynamics of E ∼ Lk turbulence
The analysis of § 3 is purely kinematic, so we now turn to dynamics. In this section,

we restrict ourselves to E ∼ Lk spectra, leaving the cases of E ∼ Jk−1 and E ∼ Ik3

until § § 5 and 6, respectively. There are two main points we wish to explore here. First,
we shall show that the invariance of L, noted in § 2.2, is an immediate consequence
of the principle of conservation of linear momentum. Secondly, Lesieur & Herring
(1985) have suggested that E ∼ Lk turbulence cannot evolve in a self-similar manner
at the large scales. Indeed, they suggest that the E ∼ Lk part of the spectrum will
be rapidly overshadowed by the transient growth of an E ∼ Ik3 component. We shall
confirm this. First, however, let us start with the physical interpretation of (2.25).

4.1. The physical interpretation of the invariance of L

Consider a circular control surface, S, of radius R, embedded in a sea of homogeneous
turbulence. We shall apply the principle of conservation of momentum to the two-
dimensional volume, V , enclosed by S, and show that this leads directly to the
invariant (2.25). That is to say, we shall show that L is a measure of the square of
the linear momentum held within V , and that this is conserved in the limit of large
R because the flux of momentum across the surface S is negligible. In the process, we
provide independent confirmation of (2.32):

L =

〈[∫
V

u dV

]2
〉/

V.

The first step is to evaluate the total linear momentum, L =
∫

udV , contained within

V . (Actually, it turns out to be more convenient to work with L2, for reasons that
will become apparent.) Noting that ui = ∇ · (uxi), we may write

L2 =

∫
V

u dV ·
∮

S

x(u · dS), (4.1)
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which yields

〈L2〉 =

〈∫
V

[
ui

∮
S

xiu · dS
]

dV

〉
. (4.2)

Let us take the origin for x to lie at the centre of V . Since all points on S are
statistically equivalent, we focus on the boundary point x = −Rêx when evaluating
the inner integral. Then (4.2) simplifies to

〈L2〉 = 2πR2

∫
V

〈uxu
′
x〉 dr, (4.3)

where ux is evaluated on the surface, at x = −Rêx , and x ′ is an interior point within
V . Thus the displacement vector r = x ′ − x links x = −Rêx to the interior point x ′.
Next, substituting for 〈uxu

′
x〉, using (2.1), we find

〈L2〉 = 2πR2u2

∫
V

[
∂

∂r
(rf ) − r2

x

r
f ′(r)

]
dr. (4.4)

Since the integration is now over r , it is convenient to take a new origin at the
boundary point x = −Rêx , and introduce the polar angle φ, defined by cosφ =
r · êy/r . In terms of r and φ, we have

〈L2〉 = 4πR2u2

∫ 2R

0

∫ π/2

φ̂

[
r

∂

∂r
(rf ) − f ′(r)r2 sin2 φ

]
dφ dr, (4.5)

where φ̂ = sin−1(r/2R). Integration over φ is now straightforward and this yields,

〈L2〉
πR2

=
4u2

R

∫ 2R

0

[1 − (r/2R)2]1/2r2f (r) dr. (4.6)

We shall return to (4.6) shortly.
Let us now apply the principle of conservation of linear momentum to our control

volume. Ignoring viscous forces we have

dLi

dt
= −

∮
S

uiu · dS −
∮

S

(p/ρ) dSi, (4.7)

from which

dL2

dt
= −2

∫
V

ui dV

[∮
S

uiu · dS +

∮
S

(p/ρ) dSi

]
. (4.8)

Since 〈up′〉 = 0 in isotropic turbulence, the pressure term vanishes on averaging and
we obtain

d

dt
〈L2〉 = −2

〈∫
V

[
ui

∮
S

uiu · dS
]

dV

〉
, (4.9)

which is reminiscent of (4.2). As before, we note that all points on the boundary are
statistically equivalent, and fixing on the surface point x = −Rêx , (4.9) simplifies to

d

dt
〈L2〉 = 4πR

∫
V

〈uiuxu
′
i〉 dr, (4.10)

where uiux is evaluated on the boundary, at x = −Rêx , and x ′ is an interior point
within V . Equation (4.10) can be evaluated in exactly the same way as (4.3), and we
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find, after a little algebra,

d

dt
[〈L2〉/πR2] =

4

R

∫ 2R

0

[1 − (r/2R)2]1/2
1

r

∂

∂r
(r3u3K) dr. (4.11)

Let us now interpret (4.6) and (4.11). Comparing (4.6) with (2.32) we see that 〈L2〉/πR2

should, in the limit of R → ∞, yield L. This is readily confirmed since the right-hand
side of (4.6) tends to 2πu2[r2f ]∞ as R → ∞, consistent with (2.9). In short, (4.6)
provides independent confirmation that

L = Lim
R→∞

〈L2〉
πR2

. (4.12)

Let us now consider the more important result, (4.11). Using (4.12), this may be
rewritten as

dL

dt
= Lim

R→∞

4

R

∫ 2R

0

[1 − (r/2R)2]1/2
1

r

∂

∂r
(r3u3K) dr, (4.13)

and it is readily confirmed that the right-hand side of this equation is indeed zero
when K∞ ∼ r−3. Now for a finite but large value of R, the left-hand side of (4.13)
is proportional to the rate of change of L2, the square of the linear momentum
in V . The right-hand side, on the other hand, is proportional to the flux of linear
momentum out through the control surface S. This provides us with a simple physical
interpretation of the conservation of L: for large but finite R, L is a measure of
L2, and this is conserved because there is negligible flux of linear momentum out
through the control surface S. In effect, conservation of L follows directly from the
conservation of linear momentum.

4.2. The implications of the conservation of L

In the limit of ν → 0, kinetic energy is conserved in two-dimensional turbulence.
Thus, for a small but finite viscosity, we have at least two invariants, u2 and L. On the
other hand, it is well known that the integral scale, defined, say, as � = u2/

∫ ∞
0

kE dk,
continually grows in freely decaying turbulence (see, for example, Davidson 2004,
§ 10.1.4). The precise behaviour of � depends on how it is defined, but typically
it grows as � ∼

√
t (see Lowe & Davidson 2005, and references therein). As noted

in Lesieur & Herring (1985), this tells us that the large scales cannot evolve in a
self-similar fashion in E ∼ Lk turbulence. That is, if the large scales were self-similar,
then

L =

∫
〈u · u′〉 dr = Cu2�2,

where the pre-factor, C, is independent of time; but this is not possible if u2 is
conserved as � grows. Thus, we conclude that the small-k end of the dimensionless
energy spectrum, E(k�)/u2�, changes shape as the turbulence evolves. This is in
marked contrast to three-dimensional turbulence where the large scales are observed
to be approximately self-similar. Closure estimates, using the test-field model, suggests
that this non-self-similar evolution consists of the E ∼ Lk part of the spectrum
being progressively overshadowed by the transient growth of an E ∼ Ik3 component
(Lesieur & Herring 1985), and this is consistent with the large-eddy simulations of
Ossai & Lesieur (2001). This behaviour can be understood as follows. We have

E(k) = Lk/4π + Ik3/16π + · · ·,
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and so the wavenumber characteristic of the intersection of the E ∼ Lk and E ∼ Ik3

regions, k∗, scales as k∗ ∼
√

L/I . However, L is an invariant while I grows as

dI

dt
= 4πu3[r3K]∞.

Estimates of dI/dt obtained from numerical simulations vary, but typically I ∼ t2.3±0.3

(see for example, Ossai & Lesieur 2001), which yields k∗ ∼ t−n, 1 < n < 1.3. This
suggests that the E ∼ Lk part of the spectrum is indeed progressively overshadowed
by the E ∼ Ik3 component, even when the spectrum is represented in normalized
form, such as E(k�)/u2�.

By way of a simple example, consider the somewhat artificial case where

E(k) = c1k + c3k
3, k < k̂, (4.14)

and E ≈ 0 for k > k̂. Then,

c3 = I/16π = 2[〈u2〉 − c1k̂
2]k̂−4, (4.15)

while c1 is conserved by virtue of (2.25). We now take c3(0) = 0 and k̂ = k̂0(1+t/τ )−1/2,
in line with � ∼

√
t , τ being the initial eddy turnover time. Conservation of energy

then tells us that, for large t/τ , I grows as I ∼ t2, though the rate of rise will be
somewhat faster at moderate times. Moreover, the transition from linear to cubic
behaviour in E occurs at around

k∗ = (c1/c3)
1/2 =

√
c1/2 k̂2

[〈u2〉 − c1k̂2]1/2
, t/τ � 1/2, (4.16)

which scales as k∗ ∼ t−1 for t 
 τ . Thus, both k̂ and k∗ decrease with time, but k∗

decreases faster.

5. The large-scale dynamics of E∼ J k−1 turbulence
Let us now turn to other types of spectra, starting with the curious case of E ∼ Jk−1.

We have seen that an artificial field of turbulence composed of a random cloud of
monopoles of arbitrary sign yields a singular spectrum of the form E(k → 0) =
(J/4π)k−1. For strictly isotropic turbulence, this leads to the pathological result that
〈u2〉 diverges, and so it is tempting to dismiss this case out of hand. However, it
should be remembered that numerical simulations in a periodic square have a lower
cutoff in k, and so E ∼ Jk−1 type spectra can be observed with finite energy. Thus,
the case of E ∼ k−1 is of some interest.

It is natural to ask if the pre-factor J has a simple physical interpretation, like that
of L. In § 2.1, we saw that

J =

∫
〈ωω′〉 dr, (5.1)

which, in turn, yields

J = Lim
V →∞

〈[∫
V

ω dV

]2
〉 /

V . (5.2)

That is, J is a measure of the net vorticity contained in a large two-dimensional
volume, V . Now recall that J is non-zero when the large-scale vortices consist of a
collection of randomly located monopoles. In such a case, (5.2) tells us that we obtain
incomplete cancellation of vorticity within a finite volume V , with

∫
V

ω dV ∼ V 1/2.
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This incomplete cancellation of vorticity within any finite volume is why the energy
density of a homogeneous sea of monopoles is divergent, despite the fact that 〈ω〉 = 0.

A physical interpretation of the conservation of J may be obtained from a
consideration of (5.2). However, perhaps this is most readily understood by considering
first the analogous problem in passive scalar mixing. In the passive scalar problem,
the contaminant field, c(x, t), has the invariant Jc =

∫
〈cc′〉 dr , known as Corrsin’s

integral. The conservation of Jc can be demonstrated by integrating the evolution
equation for 〈cc′〉 over all r , while noting that those statistical correlations whose
origins lie in the advection and diffusion of c take the form of divergences, which
integrate to zero. So, physically, Jc is conserved because: (i) it can be written in the
form,

Jc = Lim
V →∞

〈[∫
V

cdV

]2
〉/

V ; (5.3)

and (ii)
∫

V
c dV is itself conserved since the advection and diffusion of c across the

surface of V is too weak to change this integral in the limit of V → ∞.
The same argument can be applied to (5.2) in order to explain the conservation

of J . That is, in the limit of large V ,
∫

V
ω dV is conserved because the advection

and diffusion of vorticity across the surface of V is too small to change this integral,
which, in turn, leads to the conservation of J in accordance with (5.2). Thus, J is the
two-dimensional vorticity analogue of Corrsin’s invariant.

We note, in passing, that the conservation of J suggests that, following the
arguments of § 4.2, the wavenumber characteristic of the intersection of the E ∼ Jk−1

and E ∼ Î k3 regions, k∗, scales as k∗ ∼ (J/Î )1/4 ∼ t−m, m ∼ 0.6. That is, if E ∼ Jk−1 at
t = 0, then the transient growth of Î will lead to E ∼ Jk−1 + Î k3/4, and if Î grows
as Î ∼ t2.5, as in Ossai & Lesieur (2001), then k∗ ∼ t−0.6. In this case, k∗ decreases at
roughly the same rate as the inverse of the integral scale. This contrasts with E ∼ Lk

spectra, where k∗ decreases considerably faster than �−1, leading to the linear part of
the spectrum being progressively overshadowed by the Ik3 part.

6. The large-scale dynamics of E ∼ I K 3 turbulence
We complete our discussion of dynamics with a brief review of the case where

J = L = 0, and hence E(k → 0) ∼ Ik3. Our main interest here lies in estimating
the rate of change of Loitsyansky’s integral, I , which is responsible for the gradual
disappearance of the E ∼ Lk part of the spectrum, as discussed in § 4.2.

There are no exact results relating to the rate of change of I , only closure estimates.
Perhaps the most common closure is EDQNM, but its predictive value in two-
dimensional turbulence is limited, partly because of the existence of coherent vortices.
A simpler, though still unsatisfactory, approach appears in Davidson (2004), which
is a direct extension of the analysis of three-dimensional turbulence by Batchelor
& Proudman (1956). Here the central, and indeed only, assumption is that fourth-
order cumulants are exponentially small at large separation. This is tantamount to
saying that there are negligible long-range interactions in the fourth-order statistics.
Note that this is a much weaker assumption than quasi-normality, which requires
that fourth-order cumulants are zero for arbitrary separation. The analysis predicts
(Davidson 2004, § 10.3),

d2I

dt2
= 2

∫
〈ss ′〉 dr, s = u2

x − u2
y, (6.1)
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or equivalently,

d2I

dt2
= Cu4l2,

for some dimensionless pre-factor, C. If the large scales evolve in a self-similar
manner (and it is not certain that they do), then C is independent of time. Given
that the integral scale is observed to grow approximately as � ∼ t0.5±0.05 (Lowe &
Davidson 2005) while u is approximately conserved, this suggests I ∼ t3.0, which is,
perhaps, not so far from the I ∼ t2.5 growth observed in Ossai & Lesieur (2001). It is
possible, however, that this is just coincidence. Certainly, the central assumption in
this closure, that fourth-order cumulants can be ignored at large separation, must be
checked independently.

Perhaps the most reliable way of estimating the rate of growth of I (t) is to return
to (2.26),

dI

dt
= 4πu3[r3K]∞.

Given that K∞ = a(r/�)−3 + O(r−4), for some pre-factor a, this yields

dI

dt
= 4πau3�3. (6.2)

The observed
√

t growth in � then suggests I ∼ t2.5, which is consistent with Ossai &
Lesieur (2001). Note that this strong growth in I (t) lies in marked contrast to three
dimensions, where I is found to be more or less constant in fully developed turbulence
(Ishida et al. 2006).

Before leaving the subject of E ∼ Ik3 turbulence, we ask if there is some two-
dimensional analogue of (1.7), relating I to the angular momentum of the flow. It
turns out that there is, though the link is somewhat tenuous. To demonstrate this, we
follow the original argument of Landau, adapted from three dimensions to two, and
start with inhomogeneous turbulence in a large closed circular domain of radius R.
It is readily verified that the net angular momentum in such a closed domain is

H =

∫
V

(x × u) dV = 2

∫
V

ψ dV êz, (6.3)

and so, on squaring and averaging, we have,

〈H2〉 = 4

∫∫
〈ψψ ′〉 dx dx ′, (6.4)

which is reminiscent of (2.31):

I = 4

∫
〈ψψ ′〉 dr. (6.5)

However, to make the link between I and H , we have the same problem as Landau
had in three dimensions. We have to assume that remote points are statistically
independent, so that, as R → ∞ , only a small volume of fluid near the boundary is
influenced by that boundary. It is then possible to show that

I = 4

∫
〈ψψ ′〉 dr = Lim

V →∞

〈H2〉
V

, (6.6)

which is the two-dimensional counterpart of (1.7). However, as in three dimensions,
the argument is unreliable because remote points are not, in general, statistically
independent, and indeed we expect 〈ψψ ′〉∞ ∼ r−3.
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7. Relating statistics to structure
We close by discussing the relationship between our findings and the structure of

the evolving vorticity field seen in numerical simulations. These simulations typically
have periodic boundary conditions and start with Fourier modes of random phase.
Often they are initialized with an energy spectrum of the form E(k → 0) ∼ Ik3. After
an initial transient, the vorticity field develops a filamentary structure, similar to that
of a passive scalar, as the enstrophy cascades to small scales. However, embedded
within this sea of sinuous vortex filaments, we observe long-lived coherent vortices,
often in the form of near-circular monopoles (see, for example, McWilliams 1984, or
Benzi, Patarnello & Santangelo 1988). Thus, there are two generic types of structure,
filaments and coherent vortices, and these are characterized by different types of
dynamics (Bartello & Warn 1996). The filaments are continually shredded and swept
around by the chaotic velocity field, feeding the enstrophy cascade in accordance with
the classical theory of Batchelor (1969), while the coherent vortices retain their size,
shape and strength over long periods of time, largely insulated from the strain field of
the other vortices. Coherent vortices occasionally die or increase in size and strength
through collisions or mergers with other coherent vortices, but this occurs over a
time scale somewhat longer than that which characterizes the enstrophy cascade
(McWilliams 1984). This has led many researchers to suggest that the late stages of
decay may be characterized as a dilute gas of monopole vortices (Carnevale et al.
1991).

Perhaps the first point to note is that, provided LBOX 
 �, periodicity does not
exclude spectra of the form E ∼ Lk or E ∼ Jk−1. That is, the fact that

∫
u dV = 0 and∫

ω dV = 0, when evaluated over the whole domain, does not exclude the possibility
that

∫
〈u · u′〉 dr , or

∫
〈ωω′〉 dr , are finite, as discussed in § 1.1. Now the regions of the

flow which are dominated by vortex filaments of mixed sign will have negligible dipole
or monopole moments, and so it is probable that they make an E ∼ Ik3 contribution
to the energy spectrum at small k. Thus, the observed persistence of the E ∼ Ik3 part of
the spectrum is, perhaps, understandable. What is more difficult to interpret, however,
is the observation that the long-term dynamics are dominated by a random sea of
monopoles. Such a distribution appears, at first sight, to require E(k → 0) ∼ Jk−1.
However, nearly all simulations in large domains show E(k → 0) ∼ Ik3 (see, for
example, Chasnov 1997; Ossai & Lesieur, 2001; Lowe & Davidson 2005). Moreover,
we have seen that both I andJ are invariants in isotropic turbulence, and so they
are presumably also conserved in periodic simulations, provided, of course, that the
domain is large enough. So, if the initial conditions are such that L = J = 0, i.e.
E(k → 0) ∼ Ik3, we can never develop an E ∼ Jk−1 spectrum. Does this exclude an
end state composed of a sea of monopoles? It turns out that it does not.

In fact, there is no contradiction between initial conditions in which J = 0 and
the emergence of monopoles, as can be seen from the following argument. Consider
a statistically homogeneous flow composed of a sea of monopoles, with 〈ω〉 = 0.
If the monopoles happened to be statistically independent, free of any mechanistic
constraint, then the central limit theorem would give∫

V

ω dV ∼ V 1/2, (7.1)

for some large volume V , thus ensuring a non-zero value of J . That is, in a large but
finite volume, enclosing a collection of randomly located monopoles, there will not
be perfect cancellation of the positive and negative monopoles, even though 〈ω〉 = 0.
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Thus, viewed from a distance, the contents of the volume itself looks like a monopole,
rather than a dipole. As discussed in § 2, the corresponding velocity field has an
infinite energy density.

Now consider a field of homogenous turbulence which has emerged from an initial
condition in which J is zero. Such a flow is subject to a powerful constraint: its
kinetic energy density must remain finite, and so it cannot approach a state in which
J is finite and

∫
ω dV ∼ V 1/2. Thus, if monopole vortices emerge in the late stages of

such turbulence, they must organize themselves in such a way so as to keep 〈u2〉 finite
and avoid (7.1). For example, if the initial state consists of a random sea of dipoles,
which then fracture to form a sea of monopoles (Couder & Basdevant 1986) then the
resulting motion of the dipoles is constrained so as to keep 〈u2〉 finite. This, in turn,
imposes a constraint on the relative spatial locations which the monopoles can adopt,
imposing some degree of coupling between the positive and negative monopoles. In
particular, the pairing of monopoles of opposite sign must be sufficiently organized
as to ensure that the net vorticity in a large but finite volume, V , grows more slowly
than V 1/2 as V increases, thus avoiding (7.1). It is almost as if the need to keep

〈
u2

〉
finite ensures that the monopoles are more thoroughly mixed than would be the case
if they were randomly located. In such a situation, a naive application of the central
limit theorem fails.

In short, while a E ∼ Jk−1 spectrum suggests that, within the turbulence, we have
a sea of random monopoles, the converse need not be true: a sea of monopoles need
not imply an E ∼ Jk−1 spectrum.

8. Conclusions
It is usually assumed that, for small k, the energy spectrum for homogeneous,

two-dimensional turbulence scales as E(k → 0) ∼ Ik3. Here, we have examined two
possible alternatives, E(k → 0) ∼ Lk and E(k → 0) ∼ Jk−1. The E ∼ Lk scaling is
shown to be entirely natural, the only prerequisite being that typical turbulent eddies
posses a finite amount of linear impulse. As in three dimensions, L is an invariant,
and its invariance is a direct consequence of the principle of conservation of linear
momentum. The E ∼ Jk−1 scaling, on the other hand, is somewhat pathological, as
〈u2〉 diverges in the strictly isotropic case. However, the scaling E ∼ Jk−1 may be
realized in numerical simulations in period squares, where the lower cutoff in k keeps
the energy finite. In any event, E ∼ Jk−1 is the hallmark of a sea of randomly located
monopole vortices. The pre-factor J is, like L, an invariant, similar in nature to
Corrsin’s invariant in passive scalar mixing.
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